Open Side Menu Go to the Top
Register
Implied odds and pot odds in percent. Implied odds and pot odds in percent.

09-04-2016 , 06:41 PM
Figuring out how much more you need to win when doing it in odds form is easy. You can have a flush draw, and be getting 2:1. You know a flush draw is around 4:1, so you just take 4-2=2, and know that you need to win around (2*call amount) on further streets to make it +ev.

But you don't always deal in odds. Sometimes maybe you figure you have a specific number of outs, and getting a percentage from that is easier, like say 33%. If someone bets 2x pot you need 40% to call. How do you take the 40% and the 33%, and from that get how much more you need to win on further streets?
Implied odds and pot odds in percent. Quote
09-04-2016 , 11:19 PM
Convert it to odds format. Memorize percentages in odds format.
Implied odds and pot odds in percent. Quote
09-04-2016 , 11:55 PM
Quote:
Originally Posted by suchwinmuchprofit

But you don't always deal in odds. Sometimes maybe you figure you have a specific number of outs, and getting a percentage from that is easier, like say 33%. If someone bets 2x pot you need 40% to call. How do you take the 40% and the 33%, and from that get how much more you need to win on further streets?
Assuming that relying on implied odds to call makes sense, if the pot is P, the bet is B and the required reduced equity is W, the estimated equity, then the needed amount of implied winnings is

I = B/W -P-2*B.

For your example, W=33% and P=B/2, so

I =B/0.33-B/2-2B= B-B/1.5 = 0.5B

Check: Your implied pot odds are

(P+B+I)/B =( B/2+B)/B+I/B= 1.5 +.5 = 2

Pot odds of 2 to 1 equates to a reduced required equity of 33%.

If you want to work only with the current required equity, say E and the reduced required equity given by the implied odds, W, then

I = (E-W)/(E*W)

For E= 40%, W=1/3

I= B* (0.4-1/3)/(0.4*1/3) =B*( 1.2 -1)/0.4 = 0.5B
Implied odds and pot odds in percent. Quote

      
m