For those who haven't seen it, here is the wording:
Quote:
Sleeping Beauty volunteers to undergo the following experiment and is told all of the following details. On Sunday she is put to sleep. A fair coin is then tossed to determine which experimental procedure is undertaken. If the coin comes up heads, Beauty is awakened and interviewed on Monday, and then the experiment ends. If the coin comes up tails, she is awakened and interviewed on Monday, given a dose of an amnesia-inducing drug, and awakened and interviewed again on Tuesday. The experiment then ends on Tuesday. The drug makes sure that she cannot remember any previous awakenings during the course of the experiment, but she will retain the ability to memories gained after the experiment is over.
Any time Sleeping beauty is awakened and interviewed, she is asked, "What is your credence now for the proposition that the coin landed heads?"
There doesn't appear to be a mathematical consensus on the correct answer. Obviously, from the experimenter's perspective, the odds are exactly 50/50 for heads/tails. From Sleeping Beauty's perspective, however, she is awoken twice as many times, on average, for a tails toss than a heads toss. For example, from Wikipedia, if you toss the coin 1000 times, she will be awoken 500 times on Monday for a heads toss, 500 times on Monday for a tails toss, and 500 times on Tuesday for a tails toss, giving a total of 2/3 of the time she is awoken, tails was thrown.
However, as an outside observer, we know it had to be 50/50 in the actual toss, so where does the difference enter? I think I'm in the 1/3 camp, but can't fully justify it. What if she is awoken once after a heads toss, and 100,000 times after a tails toss, should she believe with near certainty that tails was thrown? Seems almost like she should be able to correctly guess 2/3 of the time that it is Monday, but the number of times she is awoken should have no effect on the perceived likelihood of what was tossed.