Two Plus Two Poker Forums The Official Math/Physics/Whatever Homework questions thread
 Register FAQ Search Today's Posts Mark Forums Read Video Directory TwoPlusTwo.com

 Notices

 Science, Math, and Philosophy Discussions regarding science, math, and/or philosophy.

 10-15-2009, 04:27 PM #201 gumpzilla Carpal \'Tunnel     Join Date: Feb 2005 Posts: 13,973 Re: The Official Math/Physics/Whatever Homework questions thread I'm having a tough time figuring out how to be more clear so I'll just give a couple examples: e^(ax) is an eigenfunction of the operator d / dx, with the eigenvalue a. e^(ax) + e^(bx) with a not equal to b is not an eigenfunction of the operator d / dx. To see this, take the derivative and get ae^(ax) + be^(bx). Any constant you multiply the original function by must leave the same coefficient on both terms, but since we've stipulated that a does not equal b, that can't possibly be the case for our function, and so that sum is not an eigenfunction of the operator d / dx. sin(ax) is not an eigenfunction of the operator d / dx because we get a*cos(ax) as a result. sin(ax) is an eigenfunction of the operator d^2 / dx^2 with eigenvalue -a^2. And so on.
10-15-2009, 04:44 PM   #202
solsek
Carpal \'Tunnel

Join Date: Feb 2008
Posts: 6,003
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by gumpzilla I'm having a tough time figuring out how to be more clear so I'll just give a couple examples: e^(ax) is an eigenfunction of the operator d / dx, with the eigenvalue a. e^(ax) + e^(bx) with a not equal to b is not an eigenfunction of the operator d / dx. To see this, take the derivative and get ae^(ax) + be^(bx). Any constant you multiply the original function by must leave the same coefficient on both terms, but since we've stipulated that a does not equal b, that can't possibly be the case for our function, and so that sum is not an eigenfunction of the operator d / dx. sin(ax) is not an eigenfunction of the operator d / dx because we get a*cos(ax) as a result. sin(ax) is an eigenfunction of the operator d^2 / dx^2 with eigenvalue -a^2. And so on.
Okay, that makes sense then. Thanks

10-15-2009, 05:01 PM   #203
solsek
Carpal \'Tunnel

Join Date: Feb 2008
Posts: 6,003
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by gumpzilla Not quite. If I have an operator A acting on a function \Psi, I call \Psi an eigenfunction if the following is satisfied: $img=http://latex.codecogs.com/gif.latex?A+\Psi+=+a+\Psi$ where a is some scalar called the eigenvalue of A. So what you need to do is figure out for what choice of b the result of the operator looks like some eigenvalue E times the original function. EDIT: It might be easier if you combine terms: $img=http://latex.codecogs.com/gif.latex?Ab^2+e^{-br}+++2A+(1+-+b)+\frac{e^{-br}}{r}$ jason's sticky at the top of the forum explains how to use latex.codecogs.com to produce LaTeX images, but that won't help you much until you learn how to use LaTeX. However, for the amount of stuff you're likely to want to do, you can learn it in 20 minutes. Greek letters are things like \psi or \Psi (for uppercase), subscripts are _{text here}, superscripts are ^{text here}, nice looking fractions are \frac{numerator}{denominator} and that's about 95% of what you're going to be likely to use at first.
So with that information you posted above. Can you give me some hint on how to proceed with this? Can't really come up with an A and b to get to the original function.

10-15-2009, 05:32 PM   #204
gumpzilla
Carpal \'Tunnel

Join Date: Feb 2005
Posts: 13,973
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by solsek So with that information you posted above. Can you give me some hint on how to proceed with this? Can't really come up with an A and b to get to the original function.
What is the original function?

Also, remember that the eigenvalue must be a scalar but it doesn't need to be 1.

 10-15-2009, 05:50 PM #205 solsek Carpal \'Tunnel     Join Date: Feb 2008 Posts: 6,003 Re: The Official Math/Physics/Whatever Homework questions thread So after looking at it for a bit...if b = 1 and A = any integer you will have an eigenfunction.
10-15-2009, 05:59 PM   #206
gumpzilla
Carpal \'Tunnel

Join Date: Feb 2005
Posts: 13,973
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by solsek So after looking at it for a bit...if b = 1 and A = any integer you will have an eigenfunction.
Yes.

Once you know b, you can go about normalizing - since as you point out for any A it's an eigenfunction, you can pick whatever A you want. Normalizing means picking A such that the integral of the square of the function Ae^(-br)(since your function is real) over r = 0 to infinity is 1. This is because (as you pointed out earlier) normalizing is supposed to be capturing the idea that the square of this function is a probability density. In this particular case, you are solving for what turns out to be (in some system of units) the radial wavefunction of a 1s electron in a hydrogen atom.

10-15-2009, 06:12 PM   #207
solsek
Carpal \'Tunnel

Join Date: Feb 2008
Posts: 6,003
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by gumpzilla Yes. Once you know b, you can go about normalizing - since as you point out for any A it's an eigenfunction, you can pick whatever A you want. Normalizing means picking A such that the integral of the square of the function Ae^(-br)(since your function is real) over r = 0 to infinity is 1. This is because (as you pointed out earlier) normalizing is supposed to be capturing the idea that the square of this function is a probability density. In this particular case, you are solving for what turns out to be (in some system of units) the radial wavefunction of a 1s electron in a hydrogen atom.
Cool man, thanks a lot for the help!

10-15-2009, 06:13 PM   #208
solsek
Carpal \'Tunnel

Join Date: Feb 2008
Posts: 6,003
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by solsek I am so f-retarded. I cannot figure out the simplest problem... Consider a gas-phase N2 molecule. Its RMS speed is given by Vrms = (v^2)^(1/2) = (3kT/m)^(1/2) What speed would the gas molecule have if it had the same energy as a photon of the following wavelengths of IR, visible, and X-Ray electromagnetic radiation? lambda = 1.00 x 10^4 nm I have no idea how we are supposed to use the root mean square equation above to help solve the problem. What I thought was since it has the same energy as a photon, we can use the relationship of E = hv to find the energy associated with the wavelength of light. E = hv = hc/lambda. We have hc and lambda so we can solve for the energy. From the energy what would I do to solve for the speed of the gas molecule? Would I use E = 1/2 mv^2? Or how do I use the given equation in the problem to solve for speed? The E I get for solving E = hc/lambda is 1.9878E-20J. How do I proceed from here?
This one got lost in the array of posts from my last question. Does anyone know how to proceed from here?

We aren't given any temperature and I am not sure if we are supposed to be using that root mean square velocity equation at all. We have E = J, we have N2 where we can get a mass and we can get a velocity using (mv^2)/2. But it seems like we should be using the Vrms equation.

 10-15-2009, 06:23 PM #209 solsek Carpal \'Tunnel     Join Date: Feb 2008 Posts: 6,003 Re: The Official Math/Physics/Whatever Homework questions thread Came up with the idea of just using that mass of a diatomic nitrogen atom and using KE = (mv^2)/2 and solving for v and not using the Vrms equation.
 10-15-2009, 07:01 PM #210 solsek Carpal \'Tunnel     Join Date: Feb 2008 Posts: 6,003 Re: The Official Math/Physics/Whatever Homework questions thread We also have the Debroglie equation where lambda = h / mv. Would that equation be the correct one to use instead of the method I used?
 10-17-2009, 04:39 PM #211 mastertop101 adept   Join Date: Jun 2008 Posts: 723 Re: The Official Math/Physics/Whatever Homework questions thread A statistical question which I thought about: You know the height of all the people in population A. You know that the average height of the people in population A is 1.500 meters. Inside population A, you have 10000 people who eat at least one kiwi a day. Let's call this sub-population A(k). You know the height of all the people in A(k). The average height of A(k) is 1.540 meters. Inside population A, you have 25 people who eat at least one orange a day. Let's call this sub-population A(o). You know the height of all the people in A(o). The average height of A(o) is 1.543 meters. Now, you have a population B, whose heights are known and whose average is also 1.500 meters. If you were to take the sub-population B(k) or B(o) in order to maximize the average height, which one would you choose? Intuitively, you would tend to say that you should take B(o), but I don't think this is necessarily correct. ( I'll explain further if you think it should obviously be B(o) ) Thanks a lot.
 10-18-2009, 07:53 PM #212 ChromePony veteran     Join Date: Jul 2004 Location: Anywhere but home Posts: 2,349 Re: The Official Math/Physics/Whatever Homework questions thread Can anyone here help me out with a little simple measure theory for my Stochastics class? I don't think this is very hard but I've never had a class on it before and its not covered well in my book. Given a queue-length Markov Chain where p is the probability of an arrival and q is the probability of a service completion at any discrete time. Show, $img=http://latex.codecogs.com/gif.latex?\pi_i=\rho^i$ is an invariant measure for the MC, where $img=http://latex.codecogs.com/gif.latex?\rho=\frac{p(1-q)}{q(1-p)}$ The next part is more stochs, but bonus points if you want to give it a shot. Prove that the chain is ergodic iff p
10-18-2009, 09:04 PM   #213
ChromePony
veteran

Join Date: Jul 2004
Location: Anywhere but home
Posts: 2,349
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by ChromePony Can anyone here help me out with a little simple measure theory for my Stochastics class? I don't think this is very hard but I've never had a class on it before and its not covered well in my book. Given a queue-length Markov Chain where p is the probability of an arrival and q is the probability of a service completion at any discrete time. Show, $img=http://latex.codecogs.com/gif.latex?\pi_i=\rho^i$ is an invariant measure for the MC, where $img=http://latex.codecogs.com/gif.latex?\rho=\frac{p(1-q)}{q(1-p)}$ The next part is more stochs, but bonus points if you want to give it a shot. Prove that the chain is ergodic iff p
OK I think I actually kinda understand now, an invariant measure just needs to satisfy M=MP.

I get my transition probabilities as:

P(0,1)=p(1-q)
P(0,0)=1-p(1-q)
P(i,i+1)=p(1-q)
P(i,i-1)=q(1-p)
P(i,i)=pq + (1-p)(1-q)

In which case:

$img=http://latex.codecogs.com/gif.latex?\pi_0=P_{00}\pi_0+P_{10}\pi_1=(1-p(1-q))(1)+q(1-p)\frac{p(1-q)}{q(1-p)}=1-p(1-q)+p(1-q)=1$

...and with some algebra the general case turns out to work as well. Not that bad really, I'll try to tackle the rest of the problem and see how it goes.

 10-21-2009, 01:46 PM #214 smcdonn2 centurion   Join Date: Jul 2009 Posts: 165 Re: The Official Math/Physics/Whatever Homework questions thread are the two groups Z_2 X Z_12 and Z_4 X Z_6 isomorphic? now can I show isomorphism for two groups namely: Z_2 X Z_12 and Z_4 X Z_6 buy showing the two groups are merely a a form of Z_2 X Z_2 X Z_2 X Z_3
 10-21-2009, 01:50 PM #215 Wyman Carpal \'Tunnel     Join Date: Mar 2007 Location: Redoubling with gusto Posts: 12,023 Re: The Official Math/Physics/Whatever Homework questions thread How many elements of order 4 does each group have? Isomorphisms preserve the order of elements, so if these are not equal, the groups cannot be isomorphic.
 10-21-2009, 01:59 PM #216 smcdonn2 centurion   Join Date: Jul 2009 Posts: 165 Re: The Official Math/Physics/Whatever Homework questions thread when you ask how many elements of order 4 does each group have. Does the following have 4 elements? Z_2 X Z_2 X Z_2 X Z_3 or 24 elements? In the original question each group has 24 elements. and under the operation we have different ordered pairs. Z_2XZ_12=(0,0),(1,1),(0,2)......... Z_4 X Z_6=(0,0),(1,1),(2,2)..... So im not sure what is meant by elements of order 4? Im thinking that if we made a table there would be 144 entries and then we would have to check for isomorphism, but breaking them down in to the product of primes, I wouldnt have to go through that agony
10-21-2009, 02:06 PM   #217
Wyman
Carpal \'Tunnel

Join Date: Mar 2007
Location: Redoubling with gusto
Posts: 12,023
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by smcdonn2 when you ask how many elements of order 4 does each group have. Does the following have 4 elements? Z_2 X Z_2 X Z_2 X Z_3 or 24 elements? In the original question each group has 24 elements. and under the operation we have different ordered pairs. Z_2XZ_12=(0,0),(1,1),(0,2)......... Z_4 X Z_6=(0,0),(1,1),(2,2)..... So im not sure what is meant by elements of order 4? Im thinking that if we made a table there would be 144 entries and then we would have to check for isomorphism, but breaking them down in to the product of primes, I wouldnt have to go through that agony
2 things:

1) It looks like you don't understand the group operation in Z/mZ x Z/nZ, so make sure you know how to add elements [e.g. (1,5) + (1,8) in Z/2Z x Z/12Z ]. What is the identity in that group? Then what does it mean for an element to have order 4?

2) Z/4Z is NOT isomorphic to Z/2Z x Z/2Z, even though they both have 4 elements. Every element in Z/2Z x Z/2Z has order at most 2, and Z/4Z has 2 elements of order 4.

10-21-2009, 02:16 PM   #218
smcdonn2
centurion

Join Date: Jul 2009
Posts: 165
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by Wyman 2 things: 1) It looks like you don't understand the group operation in Z/mZ x Z/nZ, so make sure you know how to add elements [e.g. (1,5) + (1,8) in Z/2Z x Z/12Z ]. What is the identity in that group? Then what does it mean for an element to have order 4? 2) Z/4Z is NOT isomorphic to Z/2Z x Z/2Z, even though they both have 4 elements. Every element in Z/2Z x Z/2Z has order at most 2, and Z/4Z has 2 elements of order 4.
1. identity (0,0), (1,5)+(1,8)=(0,1) order 4 would mean that 4 operations bring us back to the identity.

2.

Z/4Z= {0,1,2,3}, I dont see the 2 elements of order 4 here

Z/2Z x Z/2Z = {(0,0),(1,1)}

10-21-2009, 02:23 PM   #219
Wyman
Carpal \'Tunnel

Join Date: Mar 2007
Location: Redoubling with gusto
Posts: 12,023
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by smcdonn2 1. identity (0,0), (1,5)+(1,8)=(0,1) order 4 would mean that 4 operations bring us back to the identity. 2. Z/4Z= {0,1,2,3}, I dont see the 2 elements of order 4 here Z/2Z x Z/2Z = {(0,0),(1,1)}
1. x has order 4 if x + x + x + x = identity.

2. What is the order of 0? 1? 2? 3? in Z/4Z

3. Z/2Z x Zx2Z has 4 elements, not 2.

10-21-2009, 02:37 PM   #220
smcdonn2
centurion

Join Date: Jul 2009
Posts: 165
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by Wyman 1. x has order 4 if x + x + x + x = identity. 2. What is the order of 0? 1? 2? 3? in Z/4Z 3. Z/2Z x Zx2Z has 4 elements, not 2.
2.

0= {0}=order1
1= {0,1,2,3}=4 elements
2={0,2} two elements
3={0,3,2,1}= 4elements

3.
{(0,0),(0,2),(2,0),(2,2)}

So let me ask, with something like Z/2Z X Z/2Z. Do i work the set out first for each individual then take the ordered operation? So number 3 above would be the correct way to compute it. Or should I start with the identity, in this case (0,0) i hope, and add the generator (1,1) then perform the given mod op? So i was thinking the way to do Z_2 X Z_3:

Take the identity and add the generator

{(0,0),(1,1),(0,2),(1,0),(0,1),(1,2),}

And in all honestly Im not sure what Z/4Z, It looks like its just another way to write Z mod 4. which is what I read. But something more complex like:

(3,1)+<(1,1)> in (z_4Xz_4)/<(1,1)>

i have no clue what this says

Last edited by smcdonn2; 10-21-2009 at 02:46 PM.

 10-21-2009, 02:43 PM #221 lastcardcharlie Carpal \'Tunnel     Join Date: Aug 2006 Location: QED, I think Posts: 7,527 Re: The Official Math/Physics/Whatever Homework questions thread Are you asking what addition is in the product G*H of the (additive) groups G and H? If so, it's pointwise: (g, h) + (g', h') = (g+g', h+h').
10-21-2009, 03:13 PM   #222
Wyman
Carpal \'Tunnel

Join Date: Mar 2007
Location: Redoubling with gusto
Posts: 12,023
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by smcdonn2 2. 0= {0}=order1 1= {0,1,2,3}=4 elements 2={0,2} two elements 3={0,3,2,1}= 4elements 3. {(0,0),(0,2),(2,0),(2,2)} So let me ask, with something like Z/2Z X Z/2Z. Do i work the set out first for each individual then take the ordered operation? So number 3 above would be the correct way to compute it. Or should I start with the identity, in this case (0,0) i hope, and add the generator (1,1) then perform the given mod op? So i was thinking the way to do Z_2 X Z_3: Take the identity and add the generator {(0,0),(1,1),(0,2),(1,0),(0,1),(1,2),} And in all honestly Im not sure what Z/4Z, It looks like its just another way to write Z mod 4. which is what I read. But something more complex like: (3,1)+<(1,1)> in (z_4Xz_4)/<(1,1)> i have no clue what this says
First of all, mathematics is a very precise thing. You should read your statements before you send them, so that your question is clear. This also gets you in the habit of writing well, and whoever reads your proofs will appreciate that.

Z/4Z is the factor group (or quotient group, depending on the language your book uses) that you're calling "Z mod 4". I would call it "Z mod 4Z", and I write it Z/4Z instead of Z_4, because (at least for p prime), Z_p means something else to a lot of mathematicians.

It is the set of cosets of the subgroup 4Z in Z. There are 4 such cosets:
0+4Z, 1+4Z, 2+4Z, and 3+4Z. This forms a group under the operation
(a+4Z) + (b+4Z) = (a+b)+4Z.
We often omit the (implied) 4Z when talking about this group and list the elements as 0,1,2,3.

Z/2Z x Z/2Z has 4 elements: {(0,0), (0,1), (1,0), (1,1)}.

Your calculation that (1,1) has order 6 in Z/2Z x Z/3Z is correct.

Quote:
 (3,1)+<(1,1)> in (z_4Xz_4)/<(1,1)>
First, <(1,1)> is a (normal) subgroup of Z/4Z x Z/4Z. (Z/4Z x Z/4Z)/<(1,1)> is the set of cosets of <(1,1)>.

<(1,1)> = {(0,0), (1,1), (2,2), (3,3)}
(3,1)+<(1,1)> = {(3,1), (0,2), (1,3), (2,0)}
Notice that (3,1)+<(1,1)> = (2,0)+<(1,1)>.
(3,1) and (2,0) are different choices of coset representatives for this coset.

In other words, (3,1) and (2,0) are the same element in (Z/4Z x Z/4Z) / <1,1> in just the same way as 1, 5, and 9 are the same element in Z/4Z.

Lastly, 2 elements represent the same coset if and only if their difference is in the normal subgroup (in this case, notice (3,1)-(2,0) = (1,1), which is in <(1,1)>).

edit: You can now see why I write Z/4Z. This group is Z/<4>, and <4> = 4Z.

Maybe this is helpful and will spark some questions.

 10-21-2009, 03:35 PM #223 Myrmidon7328 old hand     Join Date: Dec 2007 Posts: 1,960 Re: The Official Math/Physics/Whatever Homework questions thread How many ways can you arranged the letters in the word aaabbbccc so that you do not have three of the same letters adjacent to each other? Is there an easier way than my method? Spoiler: N = P(9;3,3,3) %total number of permutations Let A be the block aaa (same for B and C) |A| = |B| = |C| = P(7,3,3) |AnB| = |AnC| = |BnC| = P(5;3) |AnBnC| = P(3,3) So, the number is: N - (|A|+|B|+|C|) + (|AnB| + |AnC| + |BnC|) - |AnBnC|
10-21-2009, 04:15 PM   #224
smcdonn2
centurion

Join Date: Jul 2009
Posts: 165
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by Wyman 2 things: 1) It looks like you don't understand the group operation in Z/mZ x Z/nZ, so make sure you know how to add elements [e.g. (1,5) + (1,8) in Z/2Z x Z/12Z ]. What is the identity in that group? Then what does it mean for an element to have order 4? 2) Z/4Z is NOT isomorphic to Z/2Z x Z/2Z, even though they both have 4 elements. Every element in Z/2Z x Z/2Z has order at most 2, and Z/4Z has 2 elements of order 4.
Ok so back to the original question, These two groups are not isomorphic becuse their order is not the same right?

Z_2 X Z_12 = has order 12

Z_4 X Z_6 = has order 6

is this right?

10-21-2009, 04:23 PM   #225
Wyman
Carpal \'Tunnel

Join Date: Mar 2007
Location: Redoubling with gusto
Posts: 12,023
Re: The Official Math/Physics/Whatever Homework questions thread

Quote:
 Originally Posted by smcdonn2 Ok so back to the original question, These two groups are not isomorphic becuse their order is not the same right? Z_2 X Z_12 = has order 12 Z_4 X Z_6 = has order 6 is this right?
No.

The order of a group is its size, i.e. its number of elements. Both of these groups are order 24.

The order of an element in a group is the size of the subgroup generated by that element.
e.g. in Z, 1 has infinite order, since <1> is infinite.
e.g. in Z/4Z, 1 has order 4, 2 has order 2, 3 has order 4, and 0 has order 1.

My question to you is: How many elements of order 4 are in Z/4Z x Z/6Z, and how many are in Z/2Z x Z/12Z? List them.

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is Off Forum Rules
 Forum Jump User Control Panel Private Messages Subscriptions Who's Online Search Forums Forums Home Links to Popular Forums     News, Views, and Gossip     Beginners Questions     Marketplace & Staking     Casino & Cardroom Poker     Internet Poker     NL Strategy Forums     Poker Goals & Challenges     Las Vegas Lifestyle     Sporting Events     Politics     Other Other Topics Two Plus Two     About the Forums     Two Plus Two Magazine Forum     The Two Plus Two Bonus Program     Two Plus Two Pokercast     The Best of Two Plus Two Marketplace & Staking     Commercial Marketplace     General Marketplace     Staking - Offering Stakes     Staking         Staking - Offering Stakes         Staking - Seeking Stakes         Staking - Selling Shares - Online         Staking - Selling Shares - Live         Staking Rails         Transaction Feedback & Disputes     Transaction Feedback & Disputes Coaching & Training     Coaching Advice     Cash Game Poker Coach Listings     Tournament/SNG Poker Coach Listings Poker News & Discussion     News, Views, and Gossip     Poker Goals & Challenges     Poker Beats, Brags, and Variance     That's What She Said!     Poker Legislation & PPA Discussion hosted by Rich Muny     Twitch - Watch and Discuss Live Online Poker     Televised Poker     Two Plus Two Videos General Poker Strategy     Beginners Questions     Books and Publications     Poker Tells/Behavior, hosted by: Zachary Elwood     Poker Theory     Psychology No Limit Hold'em Strategy     Medium-High Stakes PL/NL     Micro-Small Stakes PL/NL     Medium-High Stakes Full Ring     Micro-Small Stakes Full Ring     Heads Up NL     Live Low-stakes NL Limit Texas Hold'em Strategy     Mid-High Stakes Limit     Micro-Small Stakes Limit Tournament Poker Strategy     STT Strategy     Heads Up SNG and Spin and Gos     Mid-High Stakes MTT     Small Stakes MTT     MTT Community Other Poker Strategy     High Stakes PL Omaha     Small Stakes PL Omaha     Omaha/8     Stud     Draw and Other Poker Live Poker     Casino & Cardroom Poker         Venues & Communities         Regional Communities     Venues & Communities     Tournament Events         WPT.com     Home Poker     Cash Strategy     Tournament Strategy Internet Poker     Internet Poker         Winning Poker Network         nj.partypoker.com         Global Poker     Commercial Software     Software         Commercial Software         Free Software General Gambling     Backgammon Forum hosted by Bill Robertie.     Probability     Sports Betting     Other Gambling Games 2+2 Communities     Other Other Topics         OOTV         Game of Thrones     The Lounge: Discussion+Review     EDF     Las Vegas Lifestyle     BBV4Life         omg omg omg     House of Blogs Sports and Games     Sporting Events         Single-Team Season Threads         Fantasy Sports     Fantasy Sports         Sporting Events     Wrestling     Golf     Chess and Other Board Games     Video Games         League of Legends         Hearthstone     Puzzles and Other Games Other Topics     Politics     History     Business, Finance, and Investing     Science, Math, and Philosophy     Religion, God, and Theology     Travel     Health and Fitness     Laughs or Links!     Computer Technical Help     Programming International Forums     Deutsch         BBV [German]     Français     Two Plus Two en Espańol

All times are GMT -4. The time now is 09:01 AM.

 Contact Us - Two Plus Two Publishing LLC - Privacy Statement - Top